|  | Linear | 
 Inheritance Hierarchy
Inheritance Hierarchy Syntax
SyntaxThe LinearRegression type exposes the following members.
 Constructors
Constructors| Name | Description | |
|---|---|---|
|  | LinearRegression | Default constructor. Constructs a LinearRegression instance with all sizes equal to zero. | 
|  | LinearRegression(DataFrame, IDFColumn) | Constructs a LinearRegression instance with the specifed regresssion data and observation column. By default, the model parameter values are computed using a QR factorization. | 
|  | LinearRegression(DataFrame, Int32) | Constructs a LinearRegression instance with the specifed regresssion data and an index to the observation column. By default, the model parameter values are computed using a QR factorization. | 
|  | LinearRegression(DoubleMatrix, DoubleVector) | Constructs a LinearRegression instance with the specifed regresssion matrix and observation vector. By default, the model parameter values are computed using a QR factorization. | 
|  | LinearRegression(DataFrame, IDFColumn, IRegressionCalculation) | Constructs a LinearRegression instance with the specifed regresssion data and observation column. Model parameter values are computed using the specified regression calculator. | 
|  | LinearRegression(DataFrame, IDFColumn, Boolean) | Constructs a LinearRegression instance with the specifed regresssion data and observation column, optionally adding an intercept parameter. By default, the model parameter values are computed using a QR factorization. | 
|  | LinearRegression(DataFrame, Int32, IRegressionCalculation) | Constructs a LinearRegression instance with the specifed regresssion data and an index to the observation column. Model parameter values are computed using the specified regression calculator. | 
|  | LinearRegression(DataFrame, Int32, Boolean) | Constructs a LinearRegression instance with the specifed regresssion data and an index to the observation column, optionally adding an intercept parameter. By default, the model parameter values are computed using a QR factorization. | 
|  | LinearRegression(DoubleMatrix, DoubleVector, IRegressionCalculation) | Constructs a LinearRegression instance with the specifed regresssion matrix and observation vector. Model parameter values are computed using the specified regression calculator. | 
|  | LinearRegression(DoubleMatrix, DoubleVector, Boolean) | Constructs a LinearRegression instance with the specifed regresssion matrix and observation vector, optionally adding an intercept parameter. By default, the model parameter values are computed using a QR factorization. | 
|  | LinearRegression(DataFrame, IDFColumn, Boolean, IRegressionCalculation) | Constructs a LinearRegression instance with the specifed regresssion data and observation column, optionally adding an intercept parameter. The model parameter values are computed using the specified regression calculator. | 
|  | LinearRegression(DataFrame, Int32, Boolean, IRegressionCalculation) | Constructs a LinearRegression instance with the specifed regresssion data and an index to the observation column, optionally adding an intercept parameter. The model parameter values are computed using the specified regression calculator. | 
|  | LinearRegression(DoubleMatrix, DoubleVector, Boolean, IRegressionCalculation) | Constructs a LinearRegression instance with the specifed regresssion matrix and observation vector, optionally adding an intercept parameter. The model parameter values are computed using the specified regression calculator. | 
 Properties
Properties| Name | Description | |
|---|---|---|
|  | CheckData | Gets and sets a boolean indicating whether or not to check input data for non-numeric values. If input data is large checking all values for NaN's and infinities can be a performance consideration. | 
|  | ColumnResizeIncrement | Gets and sets the amount by which the regression matrix is resized 
            if columns are added. (Inherited from RegressionBase) | 
|  | CovarianceMatrix | Gets the covariance matrix. | 
|  | HasInterceptParameter | Returns true if the model has an intercept parameter; otherwise,
            false. (Inherited from RegressionBase) | 
|  | Intercept | Gets the intercept. (Inherited from RegressionBase) | 
|  | IsGood | Returns true if the model parameters were successfuly computed;
            otherwise, false. (Inherited from RegressionBase) | 
|  | NumberOfObservations | Gets the number of observations. (Inherited from RegressionBase) | 
|  | NumberOfParameters | Gets the number of parameters in the model. (Inherited from RegressionBase) | 
|  | NumberOfPredictors | Gets the number of predictors. (Inherited from RegressionBase) | 
|  | Observations | Gets the vector of observations. (Inherited from RegressionBase) | 
|  | ParameterCalculationErrorMessage | Gets the error message associated with a failed parameter calculation. (Inherited from RegressionBase) | 
|  | ParameterEstimates | Gets an array of parameter objects which may be used to perform hypothesis tests on individual parameters in the model. | 
|  | Parameters | Gets the computed model parameters. (Inherited from RegressionBase) | 
|  | PredictorMatrix | Gets the predictor matrix. (Inherited from RegressionBase) | 
|  | RegressionCalculator | Gets and sets the regression calculation object used for computing the model parameters. | 
|  | RegressionMatrix | Gets the regression matrix. (Inherited from RegressionBase) | 
|  | Residuals | Get the vector of residuals. | 
|  | RowResizeIncrement | Gets and sets the amount by which the regression matrix is resized 
            if rows are added. (Inherited from RegressionBase) | 
|  | Variance | Gets an estimate of the variance. | 
 Methods
Methods| Name | Description | |
|---|---|---|
|  | AddInterceptParameter | Adds an intercept parameter to the model  and recalculates the model parameters. (Inherited from RegressionBase) | 
|  | AddObservation | Adds the given observation to the model, and recalculates the model parameters. (Inherited from RegressionBase) | 
|  | AddObservations | Adds the given observations to the model, and recalculates the model parameters. (Inherited from RegressionBase) | 
|  | AddPredictor | Adds a predictor to the model, and recalculates the model parameters. (Inherited from RegressionBase) | 
|  | AddPredictors | Adds predictors to the model, and recalculates the model parameters. (Inherited from RegressionBase) | 
|  | Clone | Creates a deep copy of this LinearRegression. | 
|  | GetStandardizedResiduals | Returns the standardized residuals (also known as the internally studentized residuals). | 
|  | GetStudentizedResiduals | Returns the (externally) studentized residuals. | 
|  | PredictedObservation | Returns the value of the dependent variable predicted by the model for the given set of predictor values. | 
|  | PredictedObservations | Returns the values of the dependent variable predicted by the model for the given sets of predictor values. | 
|  | PredictionInterval | Returns a confidence interval for the value of the dependent variable predicted by the model for the given set of predictor values. | 
|  | RecalculateParameters | Recalculates the model parameters. (Overrides RegressionBaseRecalculateParameters) | 
|  | RemoveInterceptParameter | Removes the intercept parameter from the model, and recalculates the model parameters. (Inherited from RegressionBase) | 
|  | RemoveObservation | Removes the row at the indicated index from the predictor matrix and the 
            corresponding element from the observation vector, and recalculates the model
            parameters. (Inherited from RegressionBase) | 
|  | RemoveObservations | Removes the specified rows from the predictor matrix, and recalculates the model
            parameters. (Inherited from RegressionBase) | 
|  | RemovePredictor | Removes the specified predictor from the model, and recalculates the
            model parameters. (Inherited from RegressionBase) | 
|   | RemovePredictors | Removes the specified predictors from the model, and recalculates the model 
            parameters. (Inherited from RegressionBase) | 
|  | SetRegressionData(DataFrame, IDFColumn, Boolean) | Sets the regression matrix, observation vector, and intercept option to the specified values, and recalculates the model parameters. | 
|  | SetRegressionData(DoubleMatrix, DoubleVector, Boolean) | Sets the regression matrix, observation vector, and intercept option to the specified values, and recalculates the model parameters. | 
|  | VarianceInflationFactor | An index which measures how much the variance of a coefficient (square of the standard deviation) is increased because of collinearity. | 
|  | VarianceInflationFactors | An index which measures how much the variance of a coefficient (square of the standard deviation) is increased because of collinearity. | 
 Fields
Fields| Name | Description | |
|---|---|---|
|  | colResizeIncrement_ | Number of columns to add when adding variables (if needed). (Inherited from RegressionBase) | 
|   | DEFAULT_REGRESSION_CALCULATION | Default regression calculation is QRRegressionCalculation. | 
|  | errorMessage_ | Explains errors, if any. (Inherited from RegressionBase) | 
|  | hasIntercept_ | Does the model have an intercept parameter? (Inherited from RegressionBase) | 
|  | isGood_ | Is the regression good? (Inherited from RegressionBase) | 
|  | observationData_ | Full set of observations. (Inherited from RegressionBase) | 
|  | observations_ | Subvector of the observation data used in the current regression model.
            observations_ = observationData_[regMatRowSlice_]. (Inherited from RegressionBase) | 
|  | parameters_ | Model parameters. (Inherited from RegressionBase) | 
|  | regMatColSlice_ | regressionMatrx_ = regressionData_[regMatRowSlice_, regMatColSlice_] (Inherited from RegressionBase) | 
|  | regMatRowSlice_ | regressionMatrx_ = regressionData_[regMatRowSlice_, regMatColSlice_] (Inherited from RegressionBase) | 
|  | regressionData_ | The full set of regression data. (Inherited from RegressionBase) | 
|  | regressionMatrix_ | A submatrix of the regression used in this regression
            model.
            regressionMatrx_ = regressionData_[regMatRowSlice_, regMatColSlice_] (Inherited from RegressionBase) | 
|  | rowResizeIncrement_ | Number of rows to add when adding observations (if needed). (Inherited from RegressionBase) | 
 See Also
See Also