|  | Lagrangian | 
 Inheritance Hierarchy
Inheritance Hierarchy Syntax
SyntaxThe LagrangianFunction type exposes the following members.
 Constructors
Constructors| Name | Description | |
|---|---|---|
|  | LagrangianFunction | Constructs a LagrangianFunction for the given objective function and constraints. | 
 Properties
Properties| Name | Description | |
|---|---|---|
|  | CentralDifferenceDelta | Gets and sets the delta used in the centeral difference method
            for approximating the gradient with respect to the parameters. (Inherited from DoubleParameterizedFunctional) | 
|  | XDimension | Gets and sets the dimension of the domain of the functional. (Inherited from DoubleParameterizedFunctional) | 
 Methods
Methods| Name | Description | |
|---|---|---|
|  | Clone | Returns a deep copy of the base. Deriving classes must override this method. (Inherited from DoubleParameterizedFunctional) | 
|  | Evaluate(DoubleVector, DoubleVector) | Evaluates the parameterized function for the given parameter values at the 
            given point. (Overrides DoubleParameterizedFunctionalEvaluate(DoubleVector, DoubleVector)) | 
|  | Evaluate(DoubleVector, DoubleMatrix, DoubleVector) | Evaluates the parameterized function for the given parameter values at the 
            given set of points. (Inherited from DoubleParameterizedFunctional) | 
|  | GradientWithRespectToParams | Method for calculating the gradient with respect to the parameters while keeping x
            fixed at the specified value. (Inherited from DoubleParameterizedFunctional) | 
|  | GradientWithRespectToX(DoubleVector, DoubleVector) | Evaluates the gradient with respect to x at the given point. | 
|  | GradientWithRespectToX(DoubleVector, DoubleVector, DoubleVector) | Evaluates the gradient with respect to x at the given point. | 
|  | HessianWithRespectToX | Calcuates the Hessian matrix with respect to x. | 
 Remarks
Remarks See Also
See Also