  | DoubleParameterizedFunctionalGradientWithRespectToParams Method | 
            Method for calculating the gradient with respect to the parameters while keeping x
            fixed at the specified value.
            
Namespace: CenterSpace.NMath.CoreAssembly: NMath (in NMath.dll) Version: 7.4
Syntaxpublic virtual void GradientWithRespectToParams(
	DoubleVector parameters,
	DoubleVector x,
	ref DoubleVector grad
)
Public Overridable Sub GradientWithRespectToParams ( 
	parameters As DoubleVector,
	x As DoubleVector,
	ByRef grad As DoubleVector
)
public:
virtual void GradientWithRespectToParams(
	DoubleVector^ parameters, 
	DoubleVector^ x, 
	DoubleVector^% grad
)
abstract GradientWithRespectToParams : 
        parameters : DoubleVector * 
        x : DoubleVector * 
        grad : DoubleVector byref -> unit 
override GradientWithRespectToParams : 
        parameters : DoubleVector * 
        x : DoubleVector * 
        grad : DoubleVector byref -> unit Parameters
- parameters  DoubleVector
 - The gradient with respect to the parameters will be evaluated
            at this point.
 - x  DoubleVector
 - The point to fix x to.
 - grad  DoubleVector
 - On entry a vector of the correct size (same as the number of parameters). On
            exit contains the values of the gradient.
 
Exceptions| Exception | Condition | 
|---|
| InvalidArgumentException | Thrown if the length of the input gradient vector
            is not equal to the length of the vector of parameter values. | 
Remarks For example, if
            f(x1, x2: a, b) = a*cos(b*x1) + b*sin(a*x2)
            is a function parameterized on a and b, then for a fixed values of x1 and x2 we can think
            of f as being a function of a and b. We can then take the partial derivatives of f
            with respect to a and b to form the gradient with respect to the parameters:
            grad(a,b) = { fa(a,b), fb(a,b) } = { cos(b*x1) + b*x2*cos(a*x2), -x1*a*sin(b*x1) + sin(a*x2) }.
            
See Also