|  | OneVariableFunctionFitterM Class | 
            Class OneVariableFunctionFitter fits a parameterized one variable function to a set of points.
            
 Inheritance Hierarchy
Inheritance Hierarchy NMath (in NMath.dll) Version: 7.4
 Syntax
Syntaxpublic class OneVariableFunctionFitter<M> : ICloneable
where M : new(), INonlinearLeastSqMinimizer
Public Class OneVariableFunctionFitter(Of M As {New, INonlinearLeastSqMinimizer})
	Implements ICloneablegeneric<typename M>
where M : gcnew(), INonlinearLeastSqMinimizer
public ref class OneVariableFunctionFitter : ICloneable
type OneVariableFunctionFitter<'M when 'M : new() and INonlinearLeastSqMinimizer> = 
    class
        interface ICloneable
    endType Parameters
- M
- [Missing <typeparam name="M"/> documentation for "T:CenterSpace.NMath.Core.OneVariableFunctionFitter`1"] 
The OneVariableFunctionFitterM type exposes the following members.
 Constructors
Constructors Properties
Properties|  | Name | Description | 
|---|
|  | Function | Gets and sets the parameterized function. | 
|  | Minimizer | Gets and sets the function minimizer. | 
Top Methods
Methods Fields
Fields Remarks
Remarks
            In the space of the function parameters, begining at a specified starting point,
            finds a minimum (possibly local) in the sum of the squared residuals with respect to a set of data points.
            Uses a nonlinear least squares minimization to compute the solution. You must supply at least
            as many data points to fit as your function has parameters.
            
            For example, the following code fits a 4-parameter logistic function to a set of 10 data points,
            beginning at point (0.1, 0.1, 0.1, 0.1) in the parameter space.
            
OneVariableFunctionFitter<TrustRegionMinimizer>; fitter = new OneVariableFunctionFitter<TrustRegionMinimizer>(NMathFunctions.FourParameterLogistic);
DoubleVector xValues = new DoubleVector(55, 64, 70, 76, 80, 90, 72, 65, 86, 75);
DoubleVector yValues = new DoubleVector(338, 328, 308, 225, 180, 142, 283, 325, 143, 250);
DoubleVector initialParameters = new DoubleVector("0.1 0.1 0.1 0.1");
DoubleVector solution = fitter.Fit(xValues, yValues, initialParameters);
            Note that problems can have multiple local minima. Trying different initial parameter points is recommended for
            better solutions. 
            
 See Also
See Also