|  | FloatHermitianMatrix Class | 
            Class FloatHermitianMatrix represents a matrix of single-precision
            floating point complex values.
            
 Inheritance Hierarchy
Inheritance Hierarchy NMath (in NMath.dll) Version: 7.4
 Syntax
Syntax[SerializableAttribute]
public class FloatHermitianMatrix : ICloneable
<SerializableAttribute>
Public Class FloatHermitianMatrix
	Implements ICloneable
[SerializableAttribute]
public ref class FloatHermitianMatrix : ICloneable
[<SerializableAttribute>]
type FloatHermitianMatrix = 
    class
        interface ICloneable
    endThe FloatHermitianMatrix type exposes the following members.
 Constructors
Constructors Properties
Properties|  | Name | Description | 
|---|
|  | Cols | Gets the number of columns in the matrix. | 
|  | DataVector | Gets the data vector referenced by this matrix. | 
|  | Item | Gets and sets the value at the specified position. Symmetry is maintained. | 
|  | Order | Gets the order of the matrix. | 
|  | Rows | Gets the number of rows in the matrix. | 
Top Methods
Methods|  | Name | Description | 
|---|
|   | Add(FloatComplex, FloatHermitianMatrix) | Adds a scalar and an Hermitian matrix. | 
|   | Add(FloatHermitianMatrix, FloatComplex) | Adds an Hermitian matrix and a scalar. | 
|   | Add(FloatHermitianMatrix, FloatHermitianMatrix) | Adds two Hermitian matrices. | 
|  | Clone | Creates a deep copy of this matrix. | 
|  | DeepenThisCopy | Guarantees that there is only one reference to the underlying
            data and that this data is in contiguous storage. | 
|   | Divide(FloatComplex, FloatHermitianMatrix) | Divide a scalar by an Hermitian matrix. | 
|   | Divide(FloatHermitianMatrix, FloatComplex) | Divide an Hermitian matrix by a scalar. | 
|   | Divide(FloatHermitianMatrix, FloatHermitianMatrix) | Divide an Hermitian matrix by another. | 
|  | Equals | Tests for equality of this matrix and another matrix.
            Two matrices are equal if they have the same dimensions
            and all values are equal. (Overrides ObjectEquals(Object))
 | 
|  | GetHashCode | Returns an integer hash code for this matrix. (Overrides ObjectGetHashCode)
 | 
|  | LeadingSubmatrix | Returns the k by k upper left corner of the matrix. The
            matrix and the submatrix share the same data. | 
|  | MakeDiagonalReal | Sets the imaginary parts on the main diagonal to zero thereby meeting the strict
            definition of an Hermitian matrix. | 
|   | Multiply(FloatComplex, FloatHermitianMatrix) | Multiply a scalar and an Hermitian matrix. | 
|   | Multiply(FloatHermitianMatrix, FloatComplex) | Multiply an Hermitian matrix and a scalar. | 
|   | Multiply(FloatHermitianMatrix, FloatHermitianMatrix) | Multiply two lower Hermitian matrices. | 
|   | Negate | Negation operator. | 
|  | OnDeserialized | Checks that the matrix is square following deserialization | 
|  | Resize | Changes the order of this matrix to that specified, adding zeros or truncating as
            necessary. | 
|  | ShallowCopy | Creates a shallow copy of this matrix. | 
|   | Subtract(FloatComplex, FloatHermitianMatrix) | Subtracts an Hermitian matrix from a scalar. | 
|   | Subtract(FloatHermitianMatrix, FloatComplex) | Subtracts a scalar from an Hermitian matrix. | 
|   | Subtract(FloatHermitianMatrix, FloatHermitianMatrix) | Subtracts one Hermitian matrix from another. | 
|  | ToGeneralMatrix | Converts this Hermitian matrix to a general matrix. | 
|   | ToString | Returns a formatted string representation of this matrix. ToTabDelimited ToTabDelimited(String) (Overrides ObjectToString)
 | 
|   | ToString(String) | Returns a formatted string representation of this matrix. Numbers are displayed
            using the specified format. ToTabDelimited ToTabDelimited(String) | 
|   | ToTabDelimited | Returns a formatted string representation of this matrix using tabs
            and newlines. | 
|   | ToTabDelimited(String) | Returns a formatted string representation of this matrix using tabs
            and newlines. Numbers are formatted using the specified format string. | 
|  | Transpose | Transposes the Hermitian matrix. | 
Top Operators
Operators|  | Name | Description | 
|---|
|   | Addition(FloatComplex, FloatHermitianMatrix) | Adds a scalar and an Hermitian matrix. | 
|   | Addition(FloatHermitianMatrix, FloatComplex) | Adds an Hermitian matrix and a scalar. | 
|   | Addition(FloatHermitianMatrix, FloatHermitianMatrix) | Adds two Hermitian matrices. | 
|   | Division(FloatComplex, FloatHermitianMatrix) | Divide a scalar by an Hermitian matrix. | 
|   | Division(FloatHermitianMatrix, FloatComplex) | Divide an Hermitian matrix by a scalar. | 
|   | Division(FloatHermitianMatrix, FloatHermitianMatrix) | Divide an Hermitian matrix by another. | 
|   | Equality(FloatHermitianMatrix, FloatHermitianMatrix) | Tests for equality of two Hermitian matrices. Two matrices are equal if they
            have the same order and all values are equal. | 
|   | (FloatSymmetricMatrix to FloatHermitianMatrix) | Implicitly converts a FloatSymmetricMatrix instance into a
            FloatHermitianMatrix instance. | 
|   | Inequality(FloatHermitianMatrix, FloatHermitianMatrix) | Tests for inequality of two Hermitian matrices. Two matrices are equal if they
            have the same order and all values are equal. | 
|   | Multiply(FloatComplex, FloatHermitianMatrix) | Multiply a scalar and an Hermitian matrix. | 
|   | Multiply(FloatHermitianMatrix, FloatComplex) | Multiply an Hermitian matrix and a scalar. | 
|   | Multiply(FloatHermitianMatrix, FloatHermitianMatrix) | Multiply two lower Hermitian matrices.
            Multiply two lower Hermitian matrices. | 
|   | Subtraction(FloatComplex, FloatHermitianMatrix) | Subtracts an Hermitian matrix from a scalar. | 
|   | Subtraction(FloatHermitianMatrix, FloatComplex) | Subtracts a scalar from an Hermitian matrix. | 
|   | Subtraction(FloatHermitianMatrix, FloatHermitianMatrix) | Subtracts one Hermitian matrix from another. | 
|   | UnaryNegation(FloatHermitianMatrix) | Negation operator. | 
|   | UnaryPlus(FloatHermitianMatrix) | Unary + operator. Just returns the input matrix. | 
Top Remarks
Remarks
            An Hermitian matrix is equal to its conjugate transpose. In other words, 
            
A[i,j] = conj(A[j,i]) for all elements 
i,j in 
matrix A.
            
            The matrix is stored in a vector column by column. For efficiency, only the
            upper triangle is stored. For example, the following 5 by 5 Hermitian matrix:
            
    | a00 a01 a02 a03 a04 |
    | a10 a11 a12 a13 a14 |
A = | a20 a21 a22 a23 a24 |
    | a30 a31 a32 a33 a34 |
    | a40 a41 a42 a43 a44 |   
            is stored in a data vector 
v as:
            
v = [a00 a01 a11 a02 a12 a22 a03 a13 a23 a33 a04 a14 a24 a34 a44 ]
    
            In general, 
A[i,j] = v[j(j+1)/2+i], i<=j  conj(v[i(i+1)/2+j]), j<i See Also
See Also