  | FloatGSVDecomp Class | 
            Class FloatGSVDecomp computes the generalized singular value 
            decomposition (GSVD) of a pair of general rectangular matrices.
            
Inheritance Hierarchy Namespace: CenterSpace.NMath.CoreAssembly: NMath (in NMath.dll) Version: 7.4
Syntax[SerializableAttribute]
public class FloatGSVDecomp
<SerializableAttribute>
Public Class FloatGSVDecomp
[SerializableAttribute]
public ref class FloatGSVDecomp
[<SerializableAttribute>]
type FloatGSVDecomp = class end
The FloatGSVDecomp type exposes the following members.
Constructors|   | Name | Description | 
|---|
  | FloatGSVDecomp(FloatMatrix, FloatMatrix) | 
            Computes the general singular value decomposition
            U'AQ = D1(0 R), V'BQ = D2(0 R)
            for two matrices A and B. U, V, and Q are computed.
            A and B must have the same number of columns.
             | 
  | FloatGSVDecomp(FloatMatrix, FloatMatrix, Boolean, Boolean, Boolean) | 
            Computes the general singular value decomposition
            U'AQ = D1(0 R), V'BQ = D2(0 R)
            for two matrices A and B, optionally computing U, V, and Q.
            A and B must have the same number of columns.
             | 
Top
Properties|   | Name | Description | 
|---|
  | ComputeQ | 
            Returns true if the matrix Q in the decomposition
            U'AQ = D1(0 R), V'BQ = D2(0 R)
            was computed.
             | 
  | ComputeU | 
            Returns true if the matrix U in the decomposition
            U'AQ = D1(0 R), V'BQ = D2(0 R)
            was computed.
             | 
  | ComputeV | 
            Returns true if the matrix V in the decomposition
            U'AQ = D1(0 R), V'BQ = D2(0 R)
            was computed.
             | 
  | D1 | 
            Gets the matrix D1 in the general singular value decomposition
            for matrices A and B -
            U'AQ = D1(0 R), V'BQ = D2(0 R)
             | 
  | D2 | 
            Gets the matrix D2 in the general singular value decomposition
            for matrices A and B -
            U'AQ = D1(0 R), V'BQ = D2(0 R)
             | 
  | IsGood | 
            Returns true if the decomposition was successfully
            computed. Returns false if the procedure failed to
            converge.
             | 
  | Q | 
            Gets the matrix Q in the general singular value decomposition
            for matrices A and B -
            U'AQ = D1(0 R), V'BQ = D2(0 R)
             | 
  | R | 
            Gets the matrix R in the general singular value decomposition
            for matrices A and B -
            U'AQ = D1(0 R), V'BQ = D2(0 R)
             | 
  | RankOfATranspose_BTranspose | 
            Gets the effective numerical rank of (A' B'),
            where Z' denotes the transpose of the matrix Z
            and A and B are the decomposed matrices. 
             | 
  | U | 
            Gets the matrix U in the general singular value decomposition
            for matrices A and B -
            U'AQ = D1(0 R), V'BQ = D2(0 R)
             | 
  | V | 
            Gets the matrix V in the general singular value decomposition
            for matrices A and B -
            U'AQ = D1(0 R), V'BQ = D2(0 R)
             | 
  | Zero_R | 
            Gets the matrix (0 R) in the general singular value decomposition
            for matrices A and B -
            U'AQ = D1(0 R), V'BQ = D2(0 R)
            (0 R) is the matrix obtained by prepending columns of all zeros
            to the upper triangular matrix R.
             | 
Top
Remarks
            The GSVD computed for an m x n matrix A and a p x n matrix B has
            the form
            
            U'AQ = D1(0 R), V'BQ = D2(0 R)
            
            where U, V, and Q are orthogonal matrices, R is a nonsigular upper
            triangular matrix, D1 and D2 are diagonal matrices, and Z' denotes
             the transpose of the matrix Z. (0 R) is the matrix obtained by 
            prepending columns of all zeros to the upper triangular matrix R.
            
See Also